Cell parameters from 2682

 $0.50 \times 0.28 \times 0.08$ mm

1282 reflections with

 $R_{\text{int}} = 0.203$ (before

and 0.081 (after)

Intensity decay: <1%

absorption correction)

 $I > 2\sigma(I)$

 $\theta_{\rm max} = 25.1^{\circ}$

 $h = -4 \rightarrow 4$

 $k = -14 \rightarrow 14$

 $l = -20 \rightarrow 20$

reflections

 $\mu = 5.56 \text{ mm}^{-1}$

T = 173(2) K Plate

 $\theta = 2 - 25^{\circ}$

Colorless

Monoclinic

$$P2_1/c$$

 $a = 3.9237 (1) Å$
 $b = 11.9223 (2) Å$
 $c = 17.7519 (3) Å$
 $\beta = 97.034 (2)^{\circ}$
 $V = 824.18 (3) Å^{3}$
 $Z = 4$
 $D_x = 2.022 (1) Mg m^{-3}$
 D_m not measured

Data collection

Siemens SMART areadetector diffractometer ω scans Absorption correction: ψ scans (*XPREP* in *SHELXTL*; Sheldrick, 1994) $T_{min} = 0.259, T_{max} = 0.641$ 4108 measured reflections 1519 independent reflections

Refinement

Refinement on F $(\Delta/\sigma)_{\rm max} = 0.02$ $\Delta \rho_{\rm max}$ = 1.02 e Å⁻³ R = 0.046 $\Delta \rho_{\rm min} = -1.35 \ {\rm e} \ {\rm \AA}^{-3}$ wR = 0.056S = 1.74Extinction correction: none 1282 reflections Scattering factors from Inter-100 parameters national Tables for X-ray H atoms not refined Crystallography (Vol. IV) $w = 4F^2/[\sigma^2(F^2)]$ + $(0.05F^2)^2$]

Table 1. Selected geometric parameters (Å, °)

Br4—C4 Cl2—C2 Cl6—C6 N1—C7 Cl—C2 Cl_C6	1.894 (5) 1.729 (5) 1.723 (5) 1.154 (7) 1.391 (7)	C1C7 C2C3 C3C4 C4C5 C5C6	1.449 (7) 1.394 (7) 1.384 (7) 1.392 (8) 1.390 (8)
C1C6 C2C1C6 C1C2C3 C2C3C4 C3C4C5	118.5 (5) 121.1 (5) 118.6 (5) 122.4 (5)	C4—C5—C6 C1—C6—C5 N1—C7—C1	117.7 (5) 121.8 (5) 179.4 (5)

The data collection nominally covered more than a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.3° in ω . The crystal-to-detector distance was 4.94 cm. Coverage of the unique set was approximately 98% complete to at least 25° in θ . Crystal decay was monitored by repeating the initial frames at the end of the data collection and analyzing the duplicate reflections.

Data collection: ASTRO (Siemens, 1995a). Cell refinement: SAINT (Siemens, 1995b). Data reduction: SAINT. Program(s) used to solve structure: MITHRIL (Gilmore, 1984) and DIRDIF (Buerskens, 1984). Program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1985). Molecular graphics: TEXSAN. Software used to prepare material for publication: TEXSAN.

 $\textcircled{\sc 0}$ 1997 International Union of Crystallography Printed in Great Britain – all rights reserved

The author would like to thank Dr Victor G. Young Jr of the University of Minnesota X-ray Diffraction Laboratory for collecting the data on the SMART system.

Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: BK1210). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures – an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
- Britton, D. (1979). Cryst. Struct. Commun. 8, 667-670.
- Carter, V. R. & Britton, D. (1972). Acta Cryst. B28, 945-950.
- Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.
- Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- Gleason, W. B. & Britton, D. (1976). Cryst. Struct. Commun. 5, 229-232.
- Gleason, W. B. & Britton, D. (1978). Cryst. Struct. Commun. 7, 365-370.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Pauling, L. (1960). In *The Nature of the Chemical Bond*, 3rd ed. Ithaca: Cornell University Press.
- Sarma, J. A. R. P. & Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222-228.
- Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014-2021.
- Sheldrick, G. M. (1994). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1995a). ASTRO. Data Collection Software for the SMART System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1995b). SAINT. Data Processing Software for the SMART System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 227-229

2,4-Dinitro-trans-cinnamic Acid

VENKAT R. THALLADI, C. V. KRISHNAMOHAN SHARMA AND GAUTAM R. DESIRAJU

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India. E-mail: grdch@uohyd.ernet.in

(Received 19 March 1996; accepted 3 October 1996)

Abstract

2,4-Dinitrocinnamic acid [3-(2,4-dinitrophenyl)prop-2enoic acid], $C_9H_6N_2O_6$, crystallizes as a normal centrosymmetric carboxy dimer. Both O—H···O and C— H···O hydrogen bonds are found in the structure.

Comment

3,5-Dinitrocinnamic acid, (2), crystallizes as an O-H...O dimer wherein hydrogen-bonded molecules are related not by the more common inversion centre but by a twofold axis (Desiraju & Sharma, 1991). This has led us to investigate the structure of the isomeric 2,4dinitrocinnamic acid, (1). (Some details of this structure were deposited as a footnote with an earlier publication: Desiraju & Sharma, 1991; CSD refcode KODJAO.) This previous study was based on refinement on F and included only 3σ reflections. This paper presents the results of a refinement on F^2 and includes all reflections. Furthermore, the H atoms are now included in the refinement which is more relevant to the study of C- $H \cdot \cdot \cdot O$ hydrogen bonding.

Acid (1) crystallizes as a normal inversion symmetry O-H···O dimer. An ORTEPII (Johnson, 1976) plot of the molecular structure of (1) is shown in Fig. 1. The 2-nitro group and the styryl moiety are noncoplanar with the aromatic ring as expected (interplanar angles of 25.5 and 40°, respectively). The 2-nitro group does not effectively participate in C-H···O hydrogen bonding, possibly as a result of conformational inflexibility caused by steric hindrance. The overall C- $H \cdots O$ bonding in acid (1), however, is as good as in acid (2) $[C \cdots O, H \cdots O \text{ and } C \longrightarrow O \text{ ranges in}$ acids (1) and (2) are 3.261 (2)-3.629 (2), 2.606 (19)-2.900 (20) Å and 120.8 (18)–153.5 (15)°, and 3.19–3.69, 2.56–2.99 Å and 123–160°, respectively]. A packing diagram of acid (1) is given in Fig. 2. While the C- $H \cdot \cdot \cdot O$ hydrogen bonds in acid (1) are as effective as those in acid (2), they do not seem to contradict the formation of an O-H···O centrosymmetric dimer as

Fig. 1. An ORTEPII (Johnson, 1976) diagram of acid (1). Displacement ellipsoids are plotted at the 50% probability level. For clarity, H atoms are drawn as small circles.

was suggested in the case of acid (2) (Desiraju & Sharma, 1991). Such observations could be indicative of the absence and presence, respectively, in (1) and (2) of interference between different types of intermolecular forces. Such interference is a general issue in crystal engineering, which is the designed synthesis of a solidstate structure (Desiraju, 1995).

Fig. 2. The crystal structure of acid (1) approximately down [100], showing the O-H···O and C-H···O hydrogen bonds. The central pair of molecules is O-H...O hydrogen bonded. The two other molecules are C-H···O hydrogen bonded to the central pair. These C-H···O bonds involve alkenic and aromatic C-H groups.

Experimental

The title compound was prepared from the Perkin condensation of 2,4-dinitrobenzaldehyde with acetic anhydride and fused sodium acetate.

Crystal data

$C_9H_6N_2O_6$	Mo $K\alpha$ radiation
$M_r = 238.16$	$\lambda = 0.71069 \text{ Å}$
Monoclinic	Cell parameters from 50
$P2_1/n$	reflections
a = 8.760(9) Å	$\theta = 2-25^{\circ}$
b = 7.869(5) Å	$\mu = 0.141 \text{ mm}^{-1}$
c = 14.040(10) Å	T = 153 (2) K
$\beta = 93.12(7)^{\circ}$	Irregular
$V = 966.4 (14) Å^3$	$0.64 \times 0.31 \times 0.14 \text{ mm}$
Z = 4	Light yellow
$D_{\rm r} = 1.637 {\rm Mg} {\rm m}^{-3}$	
D_m not measured	

Data collection

Nicolet R3m diffractometer ω -2 θ scans Absorption correction: none 1699 measured reflections 1699 independent reflections 1254 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 24.99^{\circ}$ $h=-10\rightarrow 10$ $k = 0 \rightarrow 9$ $l = 0 \rightarrow 16$ 3 standard reflections every 100 reflections intensity decay: none

Refinement

Refinement on F^2 R(F) = 0.040 $wR(F^2) = 0.091$ S = 1.0241699 reflections 178 parameters All H atoms refined $w = 1/[\sigma^2(F_o^2) + (0.0482P)^2 + 0.0374P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.014$ $\Delta\rho_{max} = 0.169 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.244 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

O1—C9	1.322 (3)	C3—C4	1.381 (3)
O1—H9	0.87 (3)	C3—H3	0.94 (2)
02—С9	1.227 (3)	C4C5	1.389 (3)
O3—N1	1.232 (2)	C4—N2	1.473 (3)
O4N1	1.229 (2)	C5—C6	1.386 (3)
O5—N2	1.232 (2)	C5—H5	0.96 (2)
O6—N2	1.233 (2)	C6—H6	0.98 (2)
C1-C2	1.405 (3)	C7—C8	1.330 (3)
C1—C6	1.409 (3)	C7—H7	0.92 (2)
C1—C7	1.472 (3)	C8—C9	1.477 (3)
C2—C3	1.383 (3)	C8—H8	0.96 (2)
C2—N1	1.477 (3)		
C9—O1—H9	109.1 (18)	C5—C6—H6	119.0 (14)
C2-C1-C6	116.5 (2)	C1-C6-H6	119.4 (14)
C2-C1-C7	124.5 (2)	C8-C7-C1	123.2 (2)
C6C1C7	119.0 (2)	C8—C7—H7	120.6 (13)
C3-C2-C1	123.4 (2)	C1C7H7	116.1 (13)
C3-C2-N1	116.2 (2)	C7—C8—C9	120.2 (2)
C1-C2-N1	120.4 (2)	C7—C8—H8	122.5 (12)
C4—C3—C2	117.3 (2)	C9—C8—H8	117.2 (12)
C4—C3—H3	121.6 (14)	O2—C9—O1	124.0 (2)
C2-C3-H3	121.1 (14)	02	123.0 (2)
C3-C4C5	122.6 (2)	01	113.0 (2)
C3-C4-N2	118.3 (2)	O4N1O3	124.0 (2)
C5-C4-N2	119.0 (2)	O4N1C2	117.7 (2)
C6C5C4	118.6 (2)	O3—N1—C2	118.3 (2)
C6C5H5	122.4 (13)	O5—N2—O6	124.2 (2)
C4C5H5	119.0 (13)	O5N2C4	117.6 (2)
C5-C6-C1	121.6 (2)	O6—N2—C4	118.2 (2)

Data collection: Nicolet system software. Cell refinement: Nicolet system software. Data reduction: Nicolet system software. Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985). Program(s) used to refine structure: *SHELXL93* (Sheldrick, 1993). Molecular graphics: *OR-TEPII* (Johnson, 1976) and *PLUTO* (Motherwell & Clegg, 1978). Software used to prepare material for publication: *SHELXL93*.

VRT thanks the DAE for fellowship support. We thank Professor W. T. Robinson, University of Canterbury, Christchurch, New Zealand, for X-ray data collection.

References

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved

- Motherwell, W. D. S. & Clegg, W. (1978). *PLUTO. Program* for *Plotting Molecular and Crystal Structures*. University of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 229-231

$[Ph_3PH][nido-B_{11}H_{14}]$

THOMAS D. MCGRATH[†] AND ALAN J. WELCH[‡]

Department of Chemistry, The University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland. E-mail: t.d.mcgrath@chem.leeds.ac.uk

(Received 25 March 1996; accepted 23 October 1996)

Abstract

The structure of the tetradecahydro-*nido*-undecaborate-(1-) anion, as its triphenylphosphonium salt, is reported (C₁₈H₁₆P⁺.B₁₁H₁₄⁻). The borane anion has the expected icosahedral fragment geometry, with crystallographically-imposed mirror symmetry.

Comment

In the course of our synthetic and structural studies of metalla(hetero)boranes, we have isolated and structurally characterized the title salt, (I).

Although the borane anion, $[B_{11}H_{14}]^-$, has been known for over 30 years (Aftandilian, Miller, Parshall & Muetterties, 1962), its structure determination was only reported relatively recently (Getman, Krause & Shore, 1988) and the species continues to be the subject of

Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: BK1250). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.
 Desiraju, G. R. & Sharma, C. V. K. M. (1991). J. Chem. Soc. Chem. Commun. pp. 1239–1241.

[†] Present address: School of Chemistry, University of Leeds, Leeds LS2 9JT, England.

[‡] Present address: Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, Scotland.